CS-200
Computer Architecture

Part 2b. Processor, 1/Os, and Exceptions
Interrupts

Paolo lenne

<paolo.ienne@epfl.ch>

1/0 Polling

* How do we know if a peripheral has data for us (key pressed, packet arrived, etc.)?

CPU €
! ! ! v v
/0 /O /0 /0 M
device | | device | | device | | device emory
Keep visiting regularly — %
all 1/0 devices for input <

* Very expensive: if the device is fast and requires immediate action, the processor
must spend too much time to check frequently

1/0 Interrupts

* |dea: don’t check peripherals all the time, have them “ask” for attention

ﬁead_adc : 1i t0, Oxfffffo

1w to, 0(aov) # t0 = A/D converter ports
add tl, zero, zero
addi t2, zero, 1

addi t3, zero, 32

1w tl, 8(t0)
tl = A/D converter output

la t2, BUFFER

sw t1, o(t2)
store into a BUFFER

\:Td: ret 4//

loop: and t4, to, t2
add tl, tl1, t4
srl to, to, 1
addi t3, t3, -1
bnez t3, loop

AN

end: Sw tl, 10(a0)

Seen This Already in Some Languages?

* Many names for similar mechanisms:

— Callbacks, Action or Event Listeners, Signals, Promises, Futures,
Hooks...

e But there are compilers and interpreters in the picture!
* Not anymore here...

How?!

The Basic Idea of 1/0 Interrupts

Controller

Li(

Program

Counter (PC) | |

read adc —

S~—

@
~

MemData

Instruction
Memory

Very naive view:

— |nterrupt Request (IRQ)

for instance, we need to save
the place we were executing at

Interrupt Handler

1/0 Interrupts

e Several issues to take care of and behaviours to define:

— Need to know who needs attention—we do not have only one
peripheral
e After interrupt, the software checks all peripherals in turn (polling), or
* 1/0 peripheral sends identification

— Different priorities need to be expressed—some peripheral can wait
long, some cannot

— Impact on current execution: Current instruction(s) can complete?
One? Five? Twenty? What happens of the program that was
executing?!

1/0 Interrupts

fo>2if1>1
(not quite the real circuit...)

How do many peripherals connect to a single IRQ?

IRQ, IRQ

]

IRQ, IRQ,

Large resistor =

a very weak “voice” saying 0
(“unheard” if someone
“screams” 1)

-~

IRQ, IRQ, or IRQ,
ot —_]0

A sort of “decentralized” OR (wired-OR)

1/0 Interrupts

Example sequence:
Peripheral asks for attention through IREQ

2. Processor signals when it is ready to serve the peripheral through
IACK (“acknowledges” the interrupt)

3. Peripheral signals its identity

Processor takes appropriate action—transfer control to the
appropriate Exception Handler

5. Processor reverts to the interrupted task

1/0 Interrupts

Clock

Interrupt
Request
(IREQ)

\
/ ﬁ:cessor \ \

Maintain the request
until acknowledged

Peripheral

Interrupt
Acknowledge
(IACK)

Data Bus W Device Idéntiiier ><

Peripheral

1/0O Interrupt Priorities

* Daisy Chain Arbitration is one of the simplest methods

— Anyone places request (IREQ, Request)

— Acknowledge line (IACK, Grant) passed from one device to the next

— Device which wants access, intercepts the signal and hides it from successive devices
— Simple but (1) slow and (2) hard priorities

Highest priority Lowest priority

The processor or a Device 1 Device2] +++ |Devicen

proxy of the processor
\ I Graﬂt‘ l Gzéillt

Bus Grant o

Source: COD, © Morgan Kauffman 1998

Release
arbiter |« o
- & & 4 ®
Request

1/0O Interrupt Priorities

* More sophisticated methods involve special hardware
* Aninterrupt controller may be expected to

— Propagate only one IREQ at a time to the processor
* Select the one with highest fixed priority
» Select the one with equal priority which has been served last

— Propagate the returned IACK to the appropriate peripheral
— Inhibit certain devices from sending IREQs

— Allow nesting, that is higher priority IREQ to propagate while lower priority
interrupts are being served

1/0 Interrupt Controller

< JI< red, 7"\
|
|
|

load Current level Priority
K encoder
Ky -
Y v K
A B ” j'
Comparator
B<A
\ Decoder
—

Output is the index of the
lowest active request

. » ack,
© | —e— req,
>
Rl : i
| [
> ack, i
I o
S
| 0
| ©
' T
|
1€ redm1
!
|
T » ack .,
!

Nested interrupts:

if the new interrupt has higher priority
it is propagated to the processor

Source: Heuring & Jordan, © Addison Wesley 1997

Direct Memory Access (DMA)

* |nterrupts save the processor from continuously checking the 1/0 devices

* Yet, the processor may still waste a large share of its time transferring
large chunks of data to and from high-throughput peripherals (e.g., disks,
network)

* |ldea: let’s have a special peripheral perform the needed data transfers
from and to memory (R/W) and free the processor to continue
computation

Direct Memory Access

Direct Memory Access (DMA)

Interrupt request

| e ———]

IRQ
S L |

Processor Memory Peripheral Peripheral

Direct Memory Access (DMA)

| {

IRQs

= L
Processor Memory Peripheral Peripheral
A D A D A D A D

-

Load

Direct Memory Access (DMA)

| {

IRQs —

= L
Processor Memory Peripheral Peripheral
A A D A D

Direct Memory Access (DMA)

| {

IRQs
-

Processor

A D

Peripheral

A D

Peripheral

Direct Memory Access (DMA)

Maybe 1,000,000x...

| {

IRQs
= | 1R |

Processor Memory Peripheral Peripheral

A D A D

Direct Memory Access (DMA)

| { |

IRQ \
S | |

Processor Memory Peripheral Peripheral

A D A D A D A

DMA

)

Direct Memory Access (DMA)

DMA

| {

IRQs

Processor Memory Peripheral Peripheral

A D A D A D A D

-

“Load” (Read)

Direct Memory Access (DMA)

And the processor is free

to do something better! DMA
IRQs

Processor Memory Peripheral Peripheral

A D A D A D A D

“Store” (Write)

Direct Memory Access (DMA)

The DMA must control the bus
(write addresses and control signals)...

/\...but the master is the processor!

L

IRQy

Progessor Memory Peripheral Peripheral

Direct Memory Access (DMA)

..and regains it when the

The processor will need to .
relinquish control of the bus... DMA sends an interrupt
DMA

| {

IRQs

Processor Memory Peripheral Peripheral

D A D A D A D

oooo]]>

Direct Memory Access (DMA)

The processor needs “some memory”
to operate without access to the bus... DMA

L4

IRQs

Processor Memory Peripheral Peripheral
Some

memory... A D A D A D

-~ A__J

Direct Memory Access (DMA)

What is (minimally) in a DMA?

* Anincrement register (how
many bytes/words to transfer
at a time)

* A couple of address pointers
(source address pointer and
destination address pointer),
incremented by the above
constant at every transfer

e A counter (total number of
bytes/words to transfer)

Data
Count

Data
Register

Address
Register

—p

Data Lines « >

—

Address Lines ¢—)I
DMA Request «-

DMA Acknowledge >
Interrupt «

Read P>

Write >I

Control
Logic

Source: Stalling, © Prentice Hall 2000

Direct Memory Access (DMA)

Example sequence:

1. The processor tells the DMA controller (a) which device to access, (b) where to
read or write the memory, and (c) the number of bytes to transfer

2. The DMA controller becomes bus master and performs the required accesses
controlling directly the Address and Control busses

3. The DMA controller sends an interrupt to the processor to signal successful
completion or errors

Timer

max is programmable,
so that the processor

Counts up to max chooses the frequency
and sends in interrupt

—

l ‘]/ Timer

Processor Memory Peripheral Peripheral

IRQs
A D

A D A D A D A D

	CS-200�Computer Architecture�—�Part 2b. Processor, I/Os, and Exceptions�Interrupts
	I/O Polling
	I/O Interrupts
	Seen This Already in Some Languages?
	The Basic Idea of I/O Interrupts
	I/O Interrupts
	I/O Interrupts
	I/O Interrupts
	I/O Interrupts
	I/O Interrupt Priorities
	I/O Interrupt Priorities
	I/O Interrupt Controller
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Timer

