
1

CS-200
Computer Architecture

—
Part 2b. Processor, I/Os, and Exceptions

Interrupts

Paolo Ienne
<paolo.ienne@epfl.ch>



2

I/O Polling

• How do we know if a peripheral has data for us (key pressed, packet arrived, etc.)?

• Very expensive: if the device is fast and requires immediate action, the processor 
must spend too much time to check frequently

CPU

Memory
I/O

device
I/O

device
I/O

device
I/O

device

Keep visiting regularly
all I/O devices for input



3

I/O Interrupts

• Idea: don’t check peripherals all the time, have them “ask” for attention

lw t0, 0(a0)
add t1, zero, zero
addi t2, zero, 1
addi t3, zero, 32

loop: and t4, t0, t2
add t1, t1, t4
srl t0, t0, 1
addi t3, t3, -1
bnez t3, loop

end: sw t1, 10(a0)

read_adc: li t0, 0xfffff0
# t0 = A/D converter ports

lw t1, 8(t0)
# t1 = A/D converter output

la t2, BUFFER
sw t1, 0(t2)
# store into a BUFFER

end: ret



4

Seen This Already in Some Languages?

• Many names for similar mechanisms:
– Callbacks, Action or Event Listeners, Signals, Promises, Futures, 

Hooks…

• But there are compilers and interpreters in the picture!
• Not anymore here…

How?!



5

The Basic Idea of I/O Interrupts

+

Program
Counter (PC)

Instruction
Memory

Address
MemData

1

Controller

Interrupt Request (IRQ)read_adc

Interrupt Handler

Very naïve view:
for instance, we need to save

the place we were executing at



6

I/O Interrupts

• Several issues to take care of and behaviours to define:
– Need to know who needs attention—we do not have only one 

peripheral
• After interrupt, the software checks all peripherals in turn (polling), or
• I/O peripheral sends identification

– Different priorities need to be expressed—some peripheral can wait 
long, some cannot

– Impact on current execution: Current instruction(s) can complete? 
One? Five? Twenty? What happens of the program that was 
executing?!



7

I/O Interrupts

How do many peripherals connect to a single IRQ?

IRQ0 IRQn

IRQ

IRQ0 IRQ1

IRQ0 or IRQ1

0

If 0 Z, if 1 1
(not quite the real circuit…)

Large resistor =
a very weak “voice” saying 0

(“unheard” if someone 
“screams” 1)

A sort of “decentralized” OR (wired-OR)



8

I/O Interrupts

Example sequence: 
1. Peripheral asks for attention through IREQ
2. Processor signals when it is ready to serve the peripheral through 

IACK (“acknowledges” the interrupt)
3. Peripheral signals its identity
4. Processor takes appropriate action—transfer control to the 

appropriate Exception Handler
5. Processor reverts to the interrupted task



9

I/O Interrupts

Maintain the request 
until acknowledged



1
0

I/O Interrupt Priorities

• Daisy Chain Arbitration is one of the simplest methods
– Anyone places request (IREQ, Request)
– Acknowledge line (IACK, Grant) passed from one device to the next
– Device which wants access, intercepts the signal and hides it from successive devices
– Simple but (1) slow and (2) hard priorities

So
ur

ce
: C

O
D,

 ©
 M

or
ga

n 
Ka

uf
fm

an
 1

99
8

The processor or a 
proxy of the processor



1
1

I/O Interrupt Priorities

• More sophisticated methods involve special hardware 
• An interrupt controller may be expected to

– Propagate only one IREQ at a time to the processor
• Select the one with highest fixed priority
• Select the one with equal priority which has been served last

– Propagate the returned IACK to the appropriate peripheral
– Inhibit certain devices from sending IREQs
– Allow nesting, that is higher priority IREQ to propagate while lower priority 

interrupts are being served



1
2

I/O Interrupt Controller

So
ur

ce
: H

eu
rin

g
&

 Jo
rd

an
, ©

 A
dd

iso
n 

W
es

le
y

19
97

Nested interrupts:
if the new interrupt has higher priority

it is propagated to the processor

Hi
gh

er
 p

rio
rit

y

Output is the index of the 
lowest active request



1
3

Direct Memory Access (DMA)

• Interrupts save the processor from continuously checking the I/O devices
• Yet, the processor may still waste a large share of its time transferring 

large chunks of data to and from high-throughput peripherals (e.g., disks, 
network)

• Idea: let’s have a special peripheral perform the needed data transfers 
from and to memory (R/W) and free the processor to continue 
computation

Direct Memory Access



1
4

Direct Memory Access (DMA)

Processor

A D

IRQs

Memory

A D

Peripheral

A D

Peripheral

A D

Interrupt request



1
5

Direct Memory Access (DMA)

Processor

A D

IRQs

Memory

A D

Peripheral

A D

Peripheral

A D

Load



1
6

Direct Memory Access (DMA)

Processor

A D

IRQs

Memory

A D

Peripheral

A D

Peripheral

A D

Store



1
7

Direct Memory Access (DMA)

Processor

A D

IRQs

Memory

A D

Peripheral

A D

Peripheral

A D

Load



1
8

Direct Memory Access (DMA)

Processor

A D

IRQs

Memory

A D

Peripheral

A D

Peripheral

A D

Store

Maybe 1,000,000×…



1
9

Direct Memory Access (DMA)

Processor

A D

IRQs

Memory

A D

Peripheral

A D

Peripheral

A D

DMA

A D

from

to

count



2
0

Direct Memory Access (DMA)

Processor

A D

IRQs

Memory

A D

Peripheral

A D

Peripheral

A D

DMA

A D

from

to

count

“Load” (Read)



2
1

Direct Memory Access (DMA)

Processor

A D

IRQs

Memory

A D

Peripheral

A D

Peripheral

A D

DMA

A D

from

to

count

“Store” (Write)

And the processor is free
to do something better!



2
2

Direct Memory Access (DMA)

Processor

A D

IRQs

Memory

A D

Peripheral

A D

Peripheral

A D

DMA

A D

from

to

count

The DMA must control the bus
(write addresses and control signals)…

…but the master is the processor!



2
3

Direct Memory Access (DMA)

Processor

A D

IRQs

Memory

A D

Peripheral

A D

Peripheral

A D

DMA

A D

from

to

count

The processor will need to 
relinquish control of the bus…

A

…and regains it when the 
DMA sends an interrupt



2
4

Direct Memory Access (DMA)

Processor

A D

IRQs

Memory

A D

Peripheral

A D

Peripheral

A D

DMA

A D

from

to

count

Some
memory…

The processor needs “some memory” 
to operate without access to the bus…



2
5

Direct Memory Access (DMA)

What is (minimally) in a DMA?
• An increment register (how 

many bytes/words to transfer 
at a time)

• A couple of address pointers 
(source address pointer and 
destination address pointer), 
incremented by the above 
constant at every transfer

• A counter (total number of 
bytes/words to transfer)

So
ur

ce
: S

ta
lli

ng
, ©

 P
re

nt
ic

e 
Ha

ll 
20

00



2
6

Direct Memory Access (DMA)

Example sequence:
1. The processor tells the DMA controller (a) which device to access, (b) where to 

read or write the memory, and (c) the number of bytes to transfer
2. The DMA controller becomes bus master and performs the required accesses 

controlling directly the Address and Control busses
3. The DMA controller sends an interrupt to the processor to signal successful 

completion or errors 



2
7

Timer

Processor

A D

IRQs

Memory

A D

Peripheral

A D

Peripheral

A D

Timer

A D

max

count

Counts up to max
and sends in interrupt

max is programmable, 
so that the processor 

chooses the frequency


	CS-200�Computer Architecture�—�Part 2b. Processor, I/Os, and Exceptions�Interrupts
	I/O Polling
	I/O Interrupts
	Seen This Already in Some Languages?
	The Basic Idea of I/O Interrupts
	I/O Interrupts
	I/O Interrupts
	I/O Interrupts
	I/O Interrupts
	I/O Interrupt Priorities
	I/O Interrupt Priorities
	I/O Interrupt Controller
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Direct Memory Access (DMA)
	Timer

